
[Click to Slide 1 - Title Screen]
Good Evening. My name is Nicholas Farkash, and my topic

is Video Game Development. Video Game Development, as the
name suggests, is the process by which a video game is created.
Under the mentorship of Dr. Edward Currie, I created a video
game that I will present tonight. Before I get started, there are a
few words and phrases that you should know.

[Click to Slide 2 - Key Phrases]
A game engine is the software used to combine the

elements of a video game into one location. The game engine I
am using for my project is Unity.

A script is a text file that contains the code, which is a
series of words that gets read by the computer to perform tasks.

A scene is a segment of the entire project. Scenes can be
changed through a script.

Assets are the foundational elements of a game. They are
the graphics, sounds, and scripts of the game.

[Click to Slide 3 - Process]
The process I used this year can be divided into the

following five categories: Assets, Scenes, Level Construction,
Scripts, and Features

[Click to Slide 4 - Assets]



I used several assets for my project. Unity Hub is a
program that, among other things, has tutorials for developers to
learn from. It also has creator kits, which are bundles of assets
for developers to use. I used the “Creator Kit: RPG” asset in
addition to my own personal graphics and scripts.

[Click to Slide 5 - Scenes]
My game contains 6 scenes. The two primary scenes are

the “Overworld” and the “BattleSystem” Scenes. The
remaining 4 scenes are the “MainMenu” and 3 additional scenes
that serve as transitions. The Build Index lists all scenes in a
project. It can be interacted with through functions located in a
script.

[Click to Slide 6 - Level Construction]
My game was created using Tilesets, which is a group of

smaller images placed to create a larger image. The image on the
right is the tileset used in my game. There are 4 Layers of the
tileset, and each layer can have 1 tile active.

The Camera must adjust to the layout of a level. In my
game, the camera follows the player. However, this can be
problematic if the player moves inside a building.

[Click to Slide 7 - Scripts]
Scripts can solve this issue. There is a script called

“FadingSprite” that reduces the opacity of the roof image to



make it transparent. It is the most common script present in my
game. Other crucial scripts in the game are the
“SceneManagement” “MainMenu” and “BattleSystem”
scripts which control their respective parts of the game.

[Click to Slide 8 - Features]
Some features of my game include an Interactive

Questline, an Inventory system, and the Battle System. These
are what make the game unique, so they will be explored more
closely.

[Click to Slide 9 - Inventory]
The inventory system stores Inventory Items the player

obtains. These can be Collected by walking over them, as seen
in the GIF to the right, or by receiving them after completing a
quest. When the player obtains the inventory item, the item is
removed from the game world and placed in the player’s
inventory.

[Click to Slide 10 - Interactive Quest Line]
The Interactive Quest Line enables the player to converse

with and receive quests from an NPC, which is a Non-Player
Character. These are characters who advance the player’s
experience and cannot be controlled or manipulated.



The NPCs offer Quests, requiring the player to collect
items and return them. The player will receive a reward for
completing the quest.

When the player interacts with an NPC, they will be
presented with dialogue boxes. Each dialogue box leads to a
different response, creating Dialogue Branches. These create a
multitude of different possible conversations the player can have
with an NPC, and each conversation can result in a unique
outcome.

[Click to Slide 11 - Battle System]
The Battle System is a Turn-Based Combat System where

the player and an NPC take turns trading damage until one of
them is defeated. It’s modeled after my favorite video game
series, Pokémon.

A Battle State is one of five conditions that the battle will
be in. These are START, PLAYER TURN, ENEMY TURN,
WON, and LOST. When a battle state is switched to, that battle
state’s functions are called.

The default state is start. After the start function runs, the
Battle State switches to PLAYER TURN, allowing the player to
select an action.

The Actions are the player’s choices to attack the enemy,
heal, or flee the battle.

Once an action is selected and the function runs its script,
the Battle State switches to ENEMY TURN. The Enemy will



select an action, and it will return to PLAYER TURN. The
Battle State cycles between PLAYER TURN and ENEMY
TURN until one of the parties loses all health or the player
leaves the battle. At that point, the Battle State will switch to
either WON or LOST, depending on whether the player WON
or LOST.

[Click to Slide 12 - GIF]
This is a GIF of the Battle System in progress. The User

Interface consists of what the player can interact with. This
includes the Boxes next to each party that displays the name,
level, and health, as well as the information on the sides that lists
the damage input, maximum health, and held item. There is a
text box in the bottom left corner that tells the player what is
happening in the battle, providing useful information to the
player.

[Click to Slide 13 - Future Slide]
Next year, I will be attending Stony Brook University with

a declared major in Physics and the goal of pursuing a career in
Astrophysics.

I’d like to thank Mr. Burns, Mr. Truesdell, and the Holy
Cross staff, as well as Mrs. Kenny and Dr. Paratore for working
alongside me over the years. I’d also like to thank my peers for
all the fun we had over the last few years. Finally, I’d like to



thank my mentor, Dr. Edward Currie, who was always available
if I ever needed help. Thank you all, and stay safe.


